

TRATAMENTO DE ESGOTOS

Realizado pelo SES Insular que coleta e trata a área da região central

FISCALIZAÇÃO

Realizado por programas como o Se Liga na Rede e por ações de equipe própria da CASAN

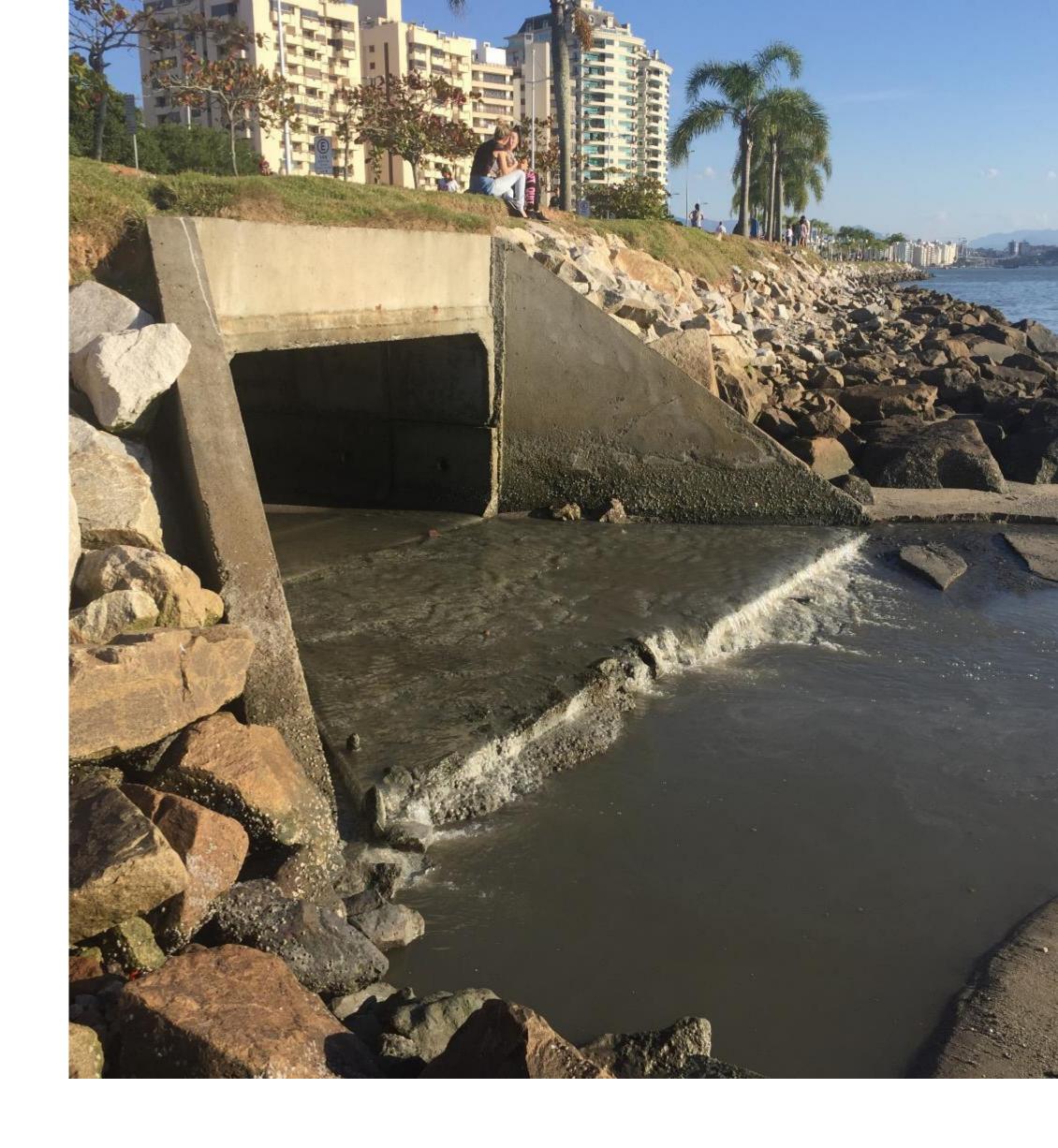
GERENCIAMENTO DA DRENAGEM

Ponto específico a ser atacado pelo projeto

O que é a URA Beira Mar?

A URA é uma unidade que se propõe a complementar o sistema de esgoto existente na região central da cidade tratando a carga residual de esgotos que persiste nas galerias de drenagem e que chega ao mar

Santa Monica Urban Runoff Recycling Facility (SMURRF)


A Blend of Technology, Art and Education

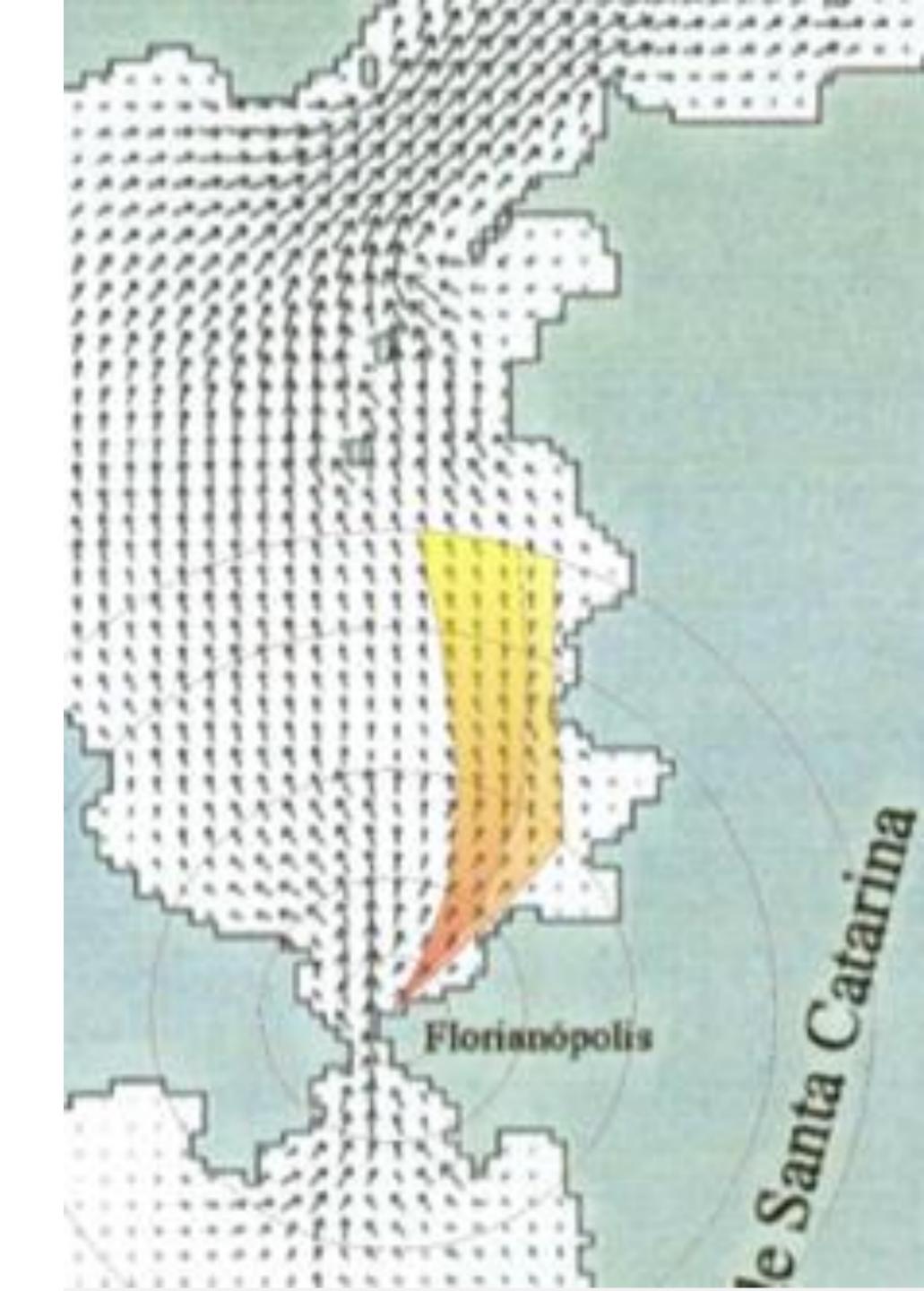
Por que a Beira Mar não é balneável?

Na região entre o GBS e a Ponta do Coral existem 22 galerias que drenam águas pluviais diretamente para a baia na Beira Mar. Essas galerias levam contribuições irregulares das edificações e das próprias redes para o mar

Land-Use Category		TSS	TP	TN	Pb	In	Cu	FC
	Minimum	281	0.59	1.3	0.49	0.18	0.03	7.1 E+07
Road	Maximum	723	1.50	3.5	1.10	0.45	0.09	2.8E+08
	Median	502	1.10	2.4	0.78	0.31	0.06	1.8E+08
Commercial	Minimum	242	0.69	1.6	1.60	1.70	1.10	L7E+09
	Maximum	1,369	0.91	8.8	4.70	4.90	3.20	9.5E+09
	Median	805	0.80	5.2	3.10	3.30	2.10	5.6E+0
Single family Low density	Minimum	60	0.46	3.3	0.03	0.07	0.09	2.8E+0
	Maximum	340	0.64	4.7	0.09	0.20	0.27	1.6E+I0
Residential	Median	200	0.55	4.0	0.06	0.13	0.18	9.3E+0
Single family	Minimum	97	0.54	4.0	0.05	0.11	0.15	4.5E+0
ligh density	Maximum	547	0.76	5.6	0.15	0.33.	0.45	2.6E+I0
Residential	Median	322	0.65	5.8	0.10	0.22	0.30	1.5E+I0
	Minimum	133	0.59	4.7	0.35	0.17	0.17	6.3E+0
Multifamily Residential	Maximum	755	0.81	6.6	1.05	0.51	0.34	3.6E+I0
nesidential	Median	444	0.70	5.6	0.70	0.34	0.51	2.1E+I0
Forest	Minimum	26	0.10	1.1	0.01	0.01	0.02	1.2E+0
	Maximum	146	0.13	2.8	0.03	0.03	0.03	6.8E+0
	Median	86	0.11	2.0	0.02	0.02	0.03	4.0E+05
Grass	Minimum	80	0.01	1.2	0.03	0.02	0.02	4.8E+05
	Maximum	588	0.25	7.1	0.10	0.17	0.04	2.7E+I0
	Median	346	0.13	4.2	0.07	0.10	0.03	1.6E+ 1
	Minimum	103	0.01	1.2	0.004	0.02	0.02	4.8E+09
Pasture	Maximum	583	0.25	7.1	0.015	0.17	0.04	2.7E+ 1
	Median	343	0.13	4.2	0.010	0.10	0.03	1.6E+ 10

3-N (mg/l)	Smullen and Cave, 1998 Smullen and Cave, 1998	78.4 14.1 52.8 0.32 0.13 2.39 1.73 0.66	54.5 11.5 44.7 0.26 0.10 2.00 1.47 0.53 11.1	3047 1035 2639 3094 1091 2016 2693 2016 1657	
3-N (mg/l)	Smullen and Cave, 1998	52.8 0.32 0.13 2.39 1.73 0.66 13.4	44.7 0.26 0.10 2.00 1.47 0.53 11.1	2639 3094 1091 2016 2693 2016	
3-N (mg/l)	Smullen and Cave, 1998	0.32 0.13 2.39 1.73 0.66	0.26 0.10 2.00 1.47 0.53 11.1	3094 1091 2016 2693 2016	
3-N (mg/l)	Smullen and Cave, 1998	0.13 2.39 1.73 0.66 13.4	0.10 2.00 1.47 0.53 11.1	1091 2016 2693 2016	
3-N (mg/l)	Smullen and Cave, 1998 Smullen and Cave, 1998 Smullen and Cave, 1998 Smullen and Cave, 1998	2.39 1.73 0.66 13.4	2.00 1.47 0.53 11.1	2016 2693 2016	
3-N (mg/l)	Smullen and Cave, 1998 Smullen and Cave, 1998 Smullen and Cave, 1998	1.73 0.66 13.4	1.47 0.53 11.1	2693 2016	
3-N (mg/I)	Smullen and Cave, 1998 Smullen and Cave, 1998	0.66 13.4	0.53 11.1	2016	
3-N (mg/l)	Smullen and Cave, 1998	13.4	11.1		
				1657	
	Smullen and Cave, 1998	625			
		67.5	50.7	2713	
	Smullen and Cave, 1998	162	129	2234	
[ug/1]	Smullen and Cave, 1998	0.7	0.5	150	
n (ug/l)	Bannerman et al., 1996	4.0	7.0	164	
	Rabanal and Grizzard, 1995	3.5	N/R	N/R	
(mg/l)	Crunkilton et al. 1006	3	N/R	N/R	
)	Schueler, 1999	15,000	N/R	34	
	US-EPA, 1998	N/R	0.025	326	
	US-EPA, 1998	N/R	0.023	327	
	Delzer, 1996	N/R	1.6	592	
= Biological = Total Nitrog	oxygen Demand COD = Con SRP = S	hemical oxygen Demand TP = Total Phosphorus oluble Reactive Phosphorus TKN = Total Kjeldahl Nitrogen			
	= Event Mea = Biological Total Nitrog	Rabanal and Grizzard, 1995 Mg/l) Crupkilton et al. 1996 Schueler, 1999 US-EPA, 1998 US-EPA, 1998 Delzer, 1996 Event Mean Concentration TSS = Total Nitrogen SRP = SPoly-aromatic Hydrocarbons N/R = N	Rabanal and Grizzard, 1995 3.5	Rabanal and Grizzard, 1995 3.5 N/R	

Por que a Beira Mar não é balneável?

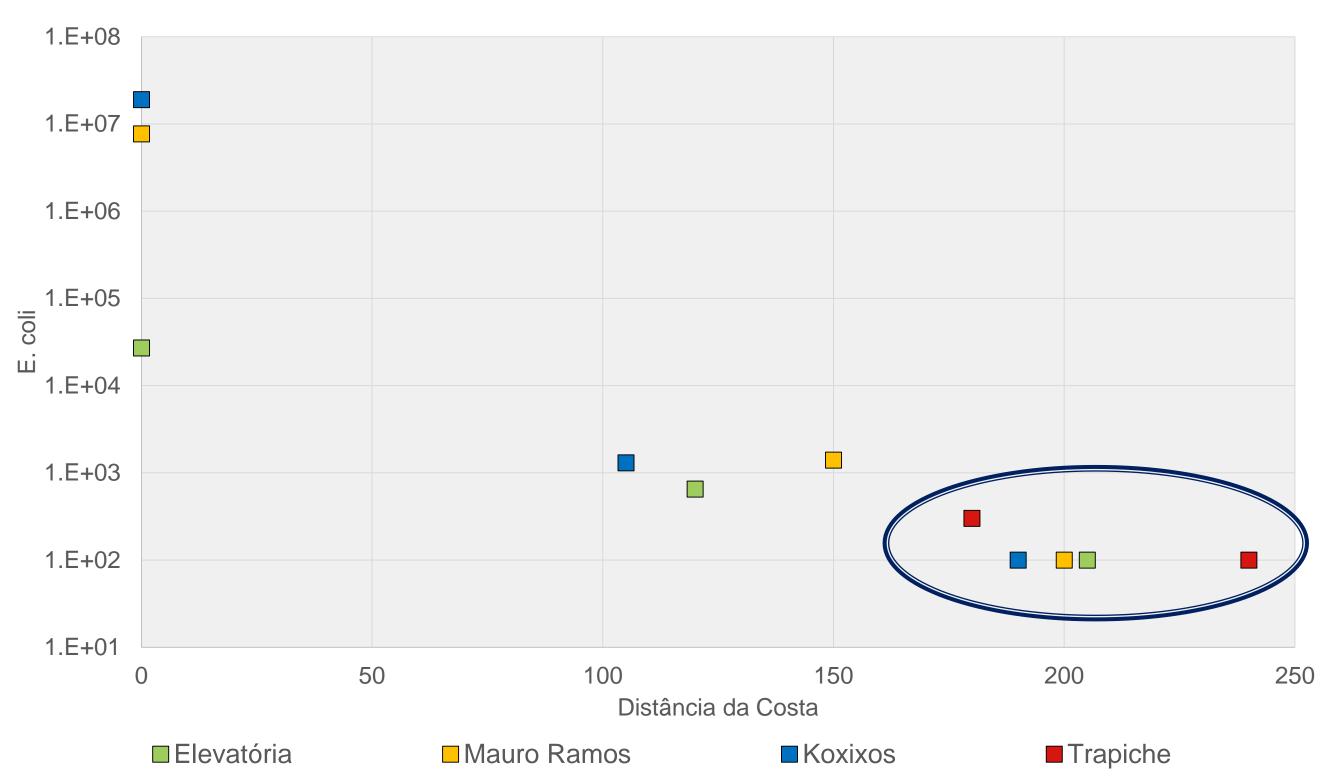

Em todos os locais do mundo são identificados poluentes nas águas presentes na drenagem.

Quanto mais intenso é o uso da área, maiores são as concentrações de coliformes observadas.

Como essa poluição se espalha?

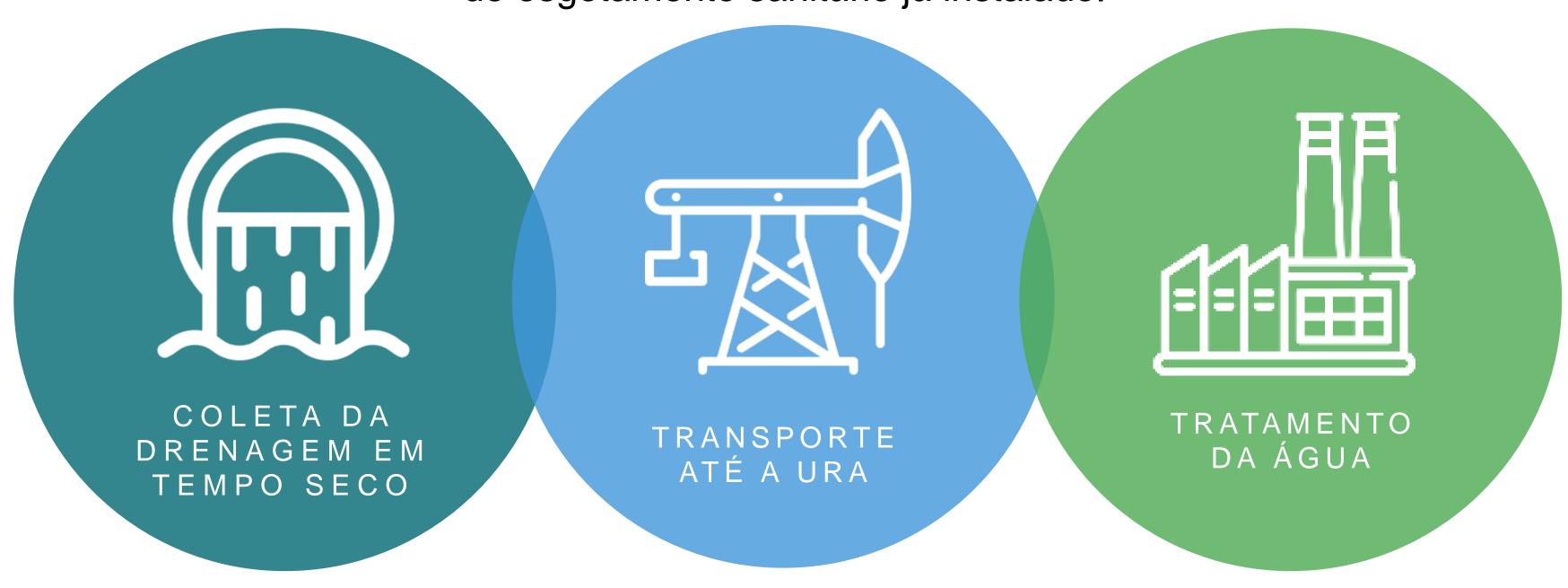
As correntes geradas principalmente pela maré geram um transporte preferencial paralelo à costa

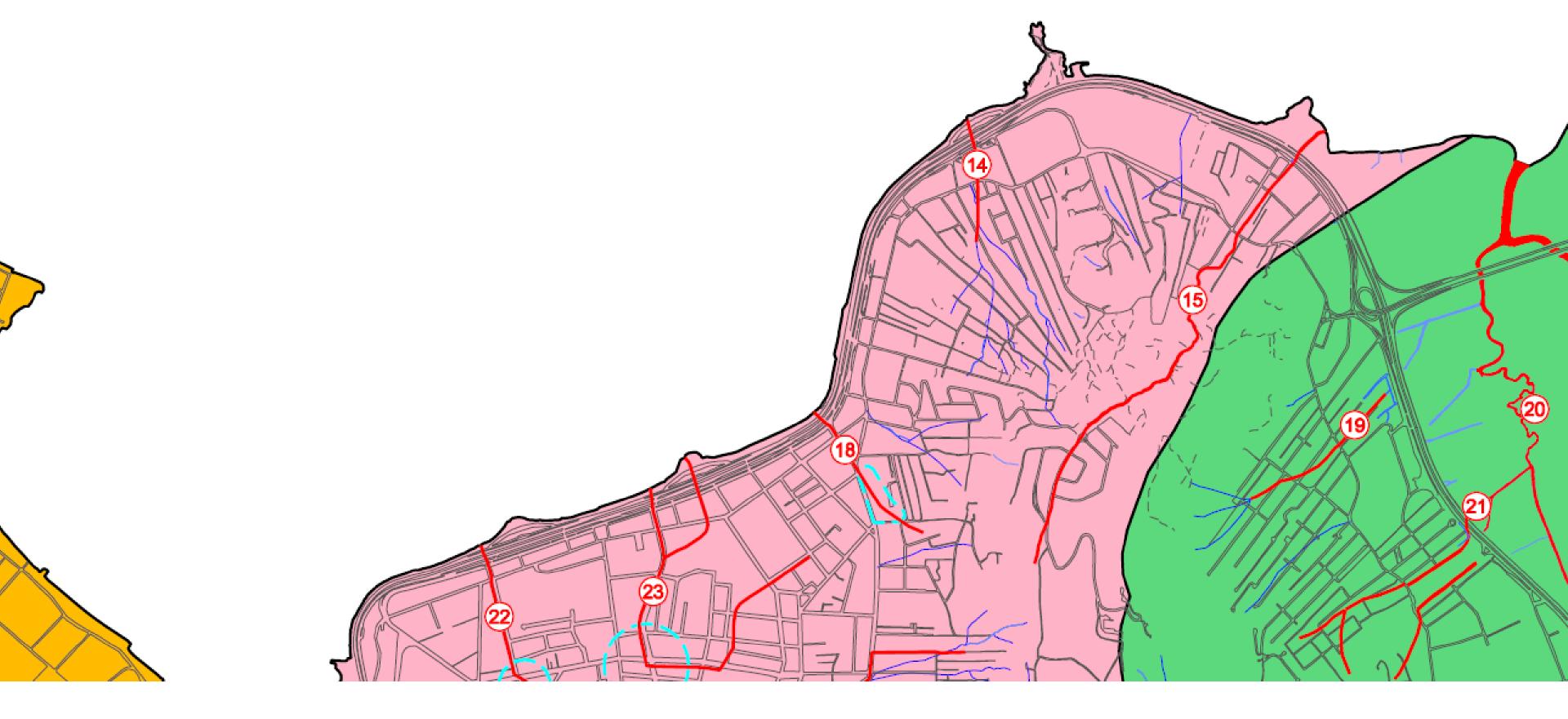
Fecal Coliform Intervalo NMP/100mL 43 250 500 1000 2500 62000


Como essa poluição se espalha?

Os coliformes morrem rapidamente na presença de água salgada e quando expostos à radiação do sol

Como a poluição se espalha?


As concentrações de E.coli a 200 metros da costa já apresentam condições que poderiam enquadrar a água como própria, em termos de balneabilidade



O que compõe o projeto

O projeto contempla três importantes ações para melhoria da condição ambiental do local e complementa o sistema de esgotamento sanitário já instalado.

Como será a coleta?

As drenagens identificadas serão desviadas para um sistema de bombeamento e transporte através de bombas que serão dimensionadas para condições de tempo seco ou pouca chuva (80 – 90% do tempo).

Em condições de chuvas intensas o sistema continuará coletando a vazão de projeto, porém o excedente irá ser descartado de forma a evitar alagamentos.

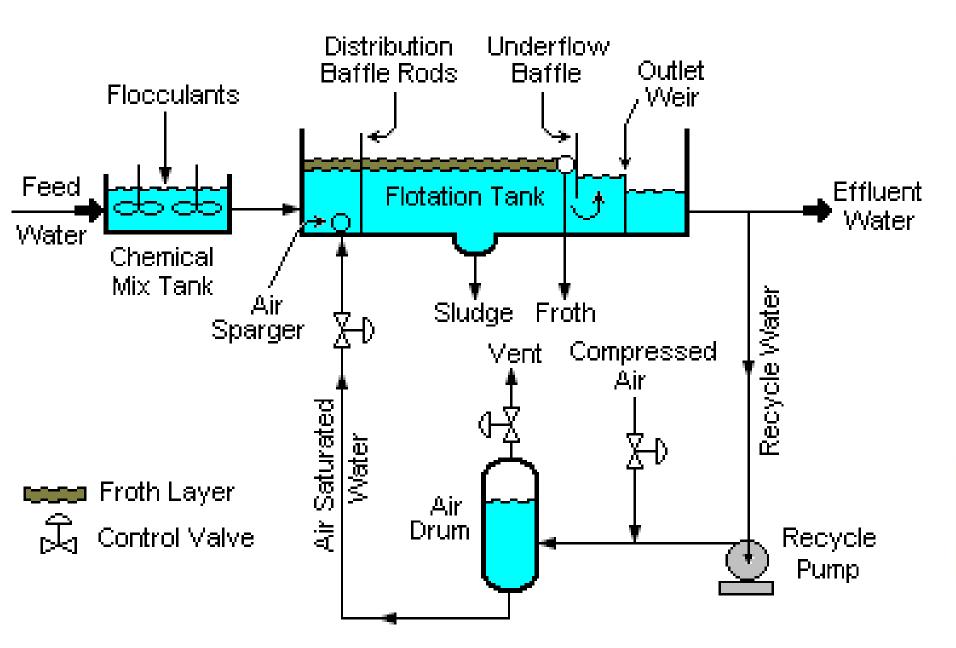
Como será a coleta?

Válvulas e dispositivos de retenção de fluxo irão interceptar e direcionar a água presente nas drenagens para cerca de 20 estações de bombeamento que alimentarão uma tubulação que transportará essa água com os poluentes para a URA.

Como será o transporte?

Uma tubulação enterrada e sob pressão irá receber todas as contribuições das estações de bombeamento e encaminhará a água para a URA.

A tubulação será de PEAD e nela existirão dispositivos de segurança para evitar o retorno da água e garantir que tudo que for bombeado chegará até a URA.



Como será o tratamento?

Uma unidade semelhante à do Sapiens Park com capacidade para tratar de 30 a 150 litros por segundo será instalada próxima à estação elevatória existente na Avenida Beira Mar.

A unidade deverá ser capaz de retirar o material em suspensão presente na água e remover os organismos indicadores de contaminação que prejudicam a balneabilidade.

Flotação por Ar Dissolvido

Remove o material em suspensão clarificando a água. Nesse material ficam retidos alguns microorganismos além de parte da matéria orgânica e dos nutrientes

Desinfecção por Ultravioleta

Elimina através da radiação as bactérias presentes na água, destruindo o material genético

ALEXANDRE BACH TREVISAN

atrevisan@casan.com.br

JAIR SARTORATO

jsartorato@casan.com.br

rmaestri@casan.com.br

Obrigado.

